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Wake field of an electron bunch moving parallel to a dielectric cylinder
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Department of Electrical Engineering, Technion-Israel Institute of Technology, Haifa 32000, Israel

~Received 10 April 2001; revised manuscript received 7 July 2001; published 30 October 2001!

The wake field of an electron bunch moving parallel to the axis of a dielectric cylinder is being considered.
It is shown that for a relativistic bunch (g@1) the circular harmonic of order zero contributes a decelerating
force inversely proportional tog, whereas the circular harmonics of nonzero order contribute ag-independent
force. Moreover, the wake linked to the circular harmonic of order zero may grow in space in case the
dielectric cylinder consists of an active medium; however, this growth rate does not depend on the value ofg.
On the other hand, no growth is anticipated for the case of circular harmonics of nonzero order.
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I. INTRODUCTION

Acceleration of electrons by radiation at optical wav
lengths is one of the most promising alternatives for fut
electron acceleration. Generally speaking, optical sche
may be divided into two main groups: in the case ofplasma-
basedschemes, a laser pulse is injected into a plasma wh
it excites a space-charge wake that, in turn, may accelera
trailing bunch of electrons@1–4#. Another group correspond
to variousinverse radiationprocesses such as inverse C
enkov @5–7#, inverse free-electron laser~IFEL! @8,9#, and
inverse transition radiation@10,11#. In the case of an invers
radiation process, the laser pulse is injected at identical c
ditions as when the radiation is emitted by electrons pro
gating within the structure. For example, in an IFEL, t
laser pulse exhibits a polarization and a wavelength such
in the presence of the wiggler, the motion of the electron
synchronous with the wave, the phase corresponding to
accelerating force. In all these laser-driven systems, en
stored in an active medium is transformed into radiation
side the laser cavity being further used for acceleration
various structures.

It was suggested in Refs.@12,13# to directly use energy
stored in an active medium in order to accelerate electro
Specifically, it was demonstrated that a Cerenkov wake, g
erated by a small trigger bunch, may be amplified by
medium. A second bunch trailing behind may be accelera
by the amplified wake. The concept was demonstrated wi
the framework of alinear theory when the charged-partic
moves in the active medium. A possible practical experim
is to launch a bunch of electrons parallel to a dielectric c
inder that may be active, e.g., a Nd:YAG rod, and exam
the acceleration of electrons by the amplified wake. Since
transverse dimension of the bunch~100mm diameter! is sig-
nificantly smaller than that of the dielectric rod~6 mm!,
many nonsymmetric modes may be excited.

It is the purpose of this study to determine the radiat
characteristics generated by a relativistic bunch of electr
moving parallel to a dielectric cylinder.

II. MODEL FORMULATION

Consider a cylinder of radiusR consisting of dielectric
material ~e!. The axis of a cylindrical coordinate syste
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(r ,f,z) coincides with that of the cylinder. Parallel to th
axis, at a radiusr 5h.R and at an anglef5f0 , a point
charge is moving at a velocityV—see Fig. 1. In its motion,
the point charge generates a current density

Jz~r ,f,z;t !52qV
1

r
d~r 2h!d~f2f0!d~z2Vt! ~1!

whose time-Fourier transform reads

Jz~r ,f,z;v!52q
1

r
d~r 2h!d~f2f0!

1

2p
e2 j ~v/V!z.

~2!

In the absenceof the cylinder this current density excites
primary ~superscript p! magnetic vector potentia
Az

(p)(r ,f,z;v) which is a solution of the equation

F¹21
v2

c2 GAz
~p!~r ,f,z;v!52m0Jz~r ,f,z;v!. ~3!

In the cylindrical coordinate system resorted to, this solut
reads

Az
~p!~r ,f,z;v!52

qm0

~2p!2 e2 j ~v/V!z (
n52`

`

ej n~f2f0!

3H I n~Gh!Kn~Gr ! r .h,

Kn~Gh!I n~Gr ! r ,h,
~4!

FIG. 1. Basic setup of the system under consideration; a die
tric cylinder ~e.g., Nd:YAG! of radiusR and a bunch of electrons
injected parallel to the axis at a radiusr 5h and an anglef5f0 .
©2001 The American Physical Society03-1
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whereinG5uvu/cgb, b5V/c, g5@12b2#21/2, I n(j), and
Kn(j) are modified Bessel functions of ordern, of the first
and second type, respectively.

At the surface of the cylinder, the tangential compone
of the primary field are given by

Ez
~p!~r 5R,f,z;v!

5 (
n52`

` F j v

g2b2 I gn~GR!Gej n~f2f0!e2 j ~v/V!zan ,

Ef
~p!~r 5R,f,z;v!

5 (
n52`

` F2 j nc/R

b
I n~GR!Gej n~g f2f0!e2 j ~v/V!zan ,

~5!

Hf
~p!~r 5R,f,z;v!

5 (
n52`

` F21

m0
G İ n~GR!Gej n~f2f0!e2 j ~v/V!zan ,

where an[2(qm0/4p2)Kn(Gh); İ n(j) stands for the de-
rivative of I n(j) with respect to the argument~j!.
05650
s

Thepresenceof the cylinder alters the field distribution in
the whole space. This change is due to the so-called sec
ary ~superscripts! field whose longitudinal components rea

Ez
~s!~r ,f,z;v!5e2 j ~v/V!z (

n52`

`

ej n~f2f0!

3H AnKn~Gr ! r .R,

BnJn~Lr ! r ,R,
~6!

Hz
~s!~r , f, z; v!5e2 j ~v/V!z (

n52`

`

ej n~f2f0!

3H CnKn~Gr ! r .R,

DnJn~Lr ! r ,R,
~7!

whereinL5uvuAe21/b2/c; Jn(j) is the Bessel function of
the first kind and ordern. Formulation of the boundary con
ditions at r 5R requires—in addition to Eqs.~6! and ~7!—
also the determination of the azimuthal components of
electromagnetic field; these are given by
ampli-
l state
Ef
~s!5e2 j ~v/V!z (

n52`

`

ej n~f2f0!H 2g2b2

v2/c2 F j vm0GCnK̇n~Gr !1
j n

r S 2 j v

V D AnKn~Gr !G r ,R,

1

L2 F j vm0LDnJ̇n~Lr !1
j n

r S 2 j v

V D BnJn~Lr !G r ,R,

~8!

Hf
~s!5e2 j ~v/V!z (

n52`

`

ej n~f2f0!H 2g2b2

v2/c2 F j n

r S 2 j v

V D CnKn~Gr !2 j ve0GAnK̇n~Gr !G r .R,

1

L2 F j n

r S 2 j v

V D DnJn~Lr !2 j ve0eLBnJ̇n~Lr !G r ,R.

~9!

whereJ̇n(j) stands for the derivative with respect to the argumentj of the Bessel function of the first kind and ordern; K̇n(j)
stands for the derivative of the modified Bessel function of the second kind, ordern, also with respect toj.

Continuity of the tangential components imposes four conditions required in order to determine the four unknown
tudesAn , Bn , Cn , andDn . Being interested only in the longitudinal reaction force acting on the point charge, we shal
here only the explicit expression of the scattered amplitude ofEz

(s), namely,

An5
j van

g2b2

ng2

V
S 11

1

ēg2b2 D 2

Jn
2KnI n2F İ nJn1

e

gbAē
I nJ̇nGF K̇nJn1

1

gbAē
KnJ̇nG

Fng

V
S 11

1

ēg2b2 D JnKnG2

2F K̇nJn1
e

gbAē
KnJ̇nGF K̇nJn1

1

gbAē
KnJ̇nG , ~10!
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wherein V[vR/c, Jn[Jn(VAē), I n[I n(V/gb), and Kn

[Kn(V/gb).
Along the path of the charged particle, the secondary l

gitudinal electric-field E(t)[Ez
(s) (r 5h, f5f0 ,z,t) is

given by

E~t!5
2q

4pe0R2 (
n52`

`
1

2p
E

2`

`

dV~2 j V!

3F KnS V

gb

h

R
D

K̇nS V

gb
D G 2

Nn~V!

Dn~V!
e j V~tc/R!, ~11!

whereint[t2z/V and

Nn~V![S ng

V
D 2S 11

1

ēg2b2 D 2

3Jn
2~VAē !I n~V/gb!Kn~V/gb!

2 İ n~V/gb!K̇n~V/gb!

3F Jn~VAē !1
e

gbAē
J̇n~VAē !

I n~V/gb!

İ n~V/gb!
G

3F Jn~VAē !1
1

gbAē
J̇n~VAē !

Kn~V/gb!

K̇n~V/gb!
G ,

~12!

Dn~V![~gb!2H S ng

V
D 2S 11

1

g2b2ē D
2

Jn
2~VAē !

3FKn~V/gb!

K̇n~V/gb!
G2

2F Jn~VAē !1
e

gbAē

3 J̇n~VAē !
Kn~V/gb!

K̇n~V/gb!
G

3F Jn~VAē !1
1

gbAē

3 J̇n~VAē !
Kn~V/gb!

K̇n~V/gb!
G J . ~13!

We shall now investigate this wake field in the limiting ca
g@1; for this purpose, the expression occurring in Eq.~11!
is divided into two parts:~a! that comprising the circula
harmonic of order zero (n50); ~b! all the remaining har-
monics (nÞ0).
05650
-

III. ANALYSIS OF THE SOLUTION

A. Circular harmonic of zero order „nÄ0…

The explicit expression for the wake for this case is

E~t!5
2q

4pe0

1

2p
E

2`

`

dV~2 j V!F K0S V

gb

h

R
D

K̇0S V

gb
D G 2

3
N0~V!

D0~V!
ej V~ct/R!, ~14!

where

N0

D0
.2

1

g2 I 1S V

g DK1S V

g D

3

J0~gAē !2
e

gAē
J1~VAē !

I 0~V/g!

I 1~V/g!

J0~VAē !1
e

gAē
J1~VAē !

K0~V/g!

K1~V/g!

. ~15!

In order to evaluate the integral in Eq.~14!, we shall deter-
mine the poles of the integrand at the limitg→`; these
poles, in turn, are determined by the zeroes of the Be
function @ps : J0(ps)[0, s51,2, . . . ,̀ # hence,

J0~VAē !5J0~ps!1~V22Vs
2!F d

dV2 J0~VAē !G
V5Vs

,

~16!

with Vs[ps /Aē and whereJ0(ps)[0. The main contribu-
tion to the integral in Eq.~14! is assumed to come from th
poles associated with the denominator in Eq.~15! and there-
fore, Eq.~14! reads

E~t!.
2q

4pe0R2

2

g2

2e

e21 (
s51

` F K0S Vs

g

h

RD
K1S Vs

g D G 2

3
d

dt̄ H 1

2p E
2`

`

dV
ej Vt̄

V22Vs
2J , ~17!

where t̄[tc/R; in this expression we resort to the relatio
I 0(u)K1(u)1I 1(u)K0(u)51/u. Imposing the requirement
of causality, the last integral is recast into the analytic fo

1

2p E
2`

`

dV
ej Vt̄

V22vs
2 5

21

Vs
sin~Vst̄ !Q~ t̄ !, ~18!
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with Q(u) denoting the Heaviside step function. Based up
this result, it is now possible to obtain the longitudinal wa
field, E0[E ( t̄50), explicitly given by

E05
q

4pe0R2

4

g2

e

e21 (
s51

` F K0S Vs

g

h

RD
K1S Vs

g D G 2

. ~19!

A rough simplification of Eq.~19! may be obtained assumin
a very large radius of curvature for the cylinder. Subject
this condition, i.e.,R@h2R andh@h2R, we obtain

F K0S Vs

g

h

RD
K1S Vs

g D G 2

.
R

h
e2~2Vs/g!@~h2R!/R#, ~20!

and bearing in mind that for large arguments, the zero-or
Bessel function of the first kind hasperiodiczeros, it is pos-
sible to approximateVs5ps /Ae21;ps/Ae21, therefore
obtaining

(
s51

`

e2s$~2p/gAe21!@~h2R!/R#%5
1

e~2p/gAe21!@~h2R!/R#21

.
1

2p

gAe21

h2R

R

, ~21!

so that

E0;
l

4pe0~h2R!

4e

Ae21

1

g
, ~22!

where l5q/2ph denotes the charge-per-unit length. Th
expression clearly indicates that the decelerating force is
versely proportional to particle’s momentum~recall that we
assumedg@1!. This runs contrary to the result occurring fo
the case of a point charge movinginsidea symmetric tunnel
bored in a dielectric material, in which case the decelera
force for g@1, is g independent. However, this is almo
exactly the expression for the decelerating field acting o
charged-line~l! moving at a hightD from a dielectric half-
space—this would correspond to a distanceh2R in the case
investigated here. In Appendix A, it is shown that this fie
~denoted byE`! is given by

E`5
l

4pe0D

2gbAe2b22/e

11~gbAe2b22/e!2
, ~23!

which for a relativistic particle (g@1) simplifies to

E`.
l

4pe0D

2e

Ae21

1

g
. ~24!
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Up to a factor of 2, this exact expression is identical to t
approximate result in Eq.~22!. In fact, we found within a
good approximation that

E05
q/2ph

4pe0~h2R! 5 h

R S h

R
21D 8p

g2

e

e21

3(
s51

` F K0S ps

gAe21

h

RD
K1S ps

gAe21
D G 2

6
.

l

4pe0~h2R! H 2e

Ae21

1

g

h

RJ , ~25!

which is identical to Eq.~24! at the limith@h2R. Figure 2
illustrates the exact decelerating field as represented by
first line in Eq. ~25! normalized to (q/2ph)/4pe0hg as a
function of the ratioh/R. As a reference, the planar cas
(E`) is also plotted and the similarity between the two
evident.

From the poles determined in Eq.~16!, we may also de-
duce an important characteristic of the wake trailing the p
ticle for active dielectric material, i.e., the dielectric coef
cient consists of a real parte r , as well as an imaginary par
e i that is nonzero within a limited frequency range (e5e r

1 j e i). Bearing in mind thatVs5ps /Aē, the dimensionless
growth rate in this case is given by

FIG. 2. The normalized decelerating field (n50) as a function
of the ratioh/R for g5100 ande53.312. Both the planar casè,
expressed in Eq.~24! and the ‘‘exact’’ expression for the cylindrica
configuration as given in Eq.~25!, are shown to be very similar
The normalization in both cases is (q/2ph)/4pe0hg. The number
of Bessel harmonics that needs to be considered has to be o
order ofgAe21, otherwise significant discrepancies occur. Subj
to this condition, the similarity between the two curves is preser
even if the other two parameters are dramatically altered~g
;10 800 ande51.5,33!.
3-4
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WAKE FIELD OF AN ELECTRON BUNCH MOVING . . . PHYSICAL REVIEW E64 056503
uIm~v!u

v res
5A1

2
A e r21

~e r21!21e i
2
AA~e r21!21e i

22e r11

;
e i

2~e r21!3/2, ~26!

where v res denotes the resonant circular frequency of
medium corresponding to one of the eigenfrequencies of
system. It is important to point out that this growth rate
g-independent.

B. Nonzero circular harmonics „nÅ0…

In this section, we shall consider the contribution of t
circular harmonics of nonzero order. According to previo
definitions and assumingg@1

Nn

Dn

.nS ng

V
D Kn~V/g!

K̇n~V/g!

1

V22@ngKn~V/g!/K̇n~V/g!#2
,

~27!

here, it was tacitly assumed that the poles correspondin
circular modes are given byV25n2g2Kn

2/K̇n
2;n2g2. Con-

sequently, the longitudinal electric field acting back on t
charge is given by the expression

E5
2q

4pe0R2

d

dt̄ 5 (
nÞ0

1

2p
E

2`

`

dVej Vt̄F KnS uVu

g

h

R
D

KnS uVu

g
D G 2

3F KnS uVu

g
D

K̇nS uVu

g
D G

3

n~ng/uVu!

V22n2g2 6 . ~28!

When evaluated near the poles, the cubic term in the i
grand is of order unity, therefore, following a similar a
proach as in the previous section, the decelerating ele
field reads

E5
q

4pe0R2
H 4(

n51

` FKnS n
h

RD
Kn~n!

G 2J . ~29!

Using the explicit expression~see Ref.@14#! for asymptotic
behavior for large orders, namely, Kn(nj)
.Ap/2n1/(11j2)1/4e2nh(j)and h(j)5A11j21 ln @j /(1
1A11j2 )# it is shown in Appendix B that forR@h2R,
the decelerating field may be approximated by the relativ
simple equation

E.
q

4pe0R2

1

2S h

R
21D 2 ~30!
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This expression is identical with the reaction field@see Ref.
@15## on a point charge moving at a heightD(5h2R) above
a dielectric half space wheng@1, which explicitly reads

E`.
q

4pe0~2D!2 32. ~31!

Figure 3 illustrates the asymptotic expression (E`) and the
expression in Eq.~29!—both normalized toq/4pe0R2. It is
evident that as the ratioh/R is closer to unity, the decelerat
ing field is inversely proportional to the square of the heig
from the surface of the cylinder. Contrary to the result in t
previous section, there is great discrepancy between
asymptotic solution (E`) and the exact one forh/R.3.
Based on these two expressions, we developed an app
mation of the exact solution that has the following form:

Eapprox.
q

4pe0R2

1

2S h

R
21D 2

coshF3

2 S h

R
21D G , ~32!

this expression is also illustrated in Fig. 3 and evidently
shows excellent agreement with the exact solution.

The expression in Eqs.~29! and ~32! clearly imply a
g-independent decelerating field for very highg. Moreover,
the high-order (n.0) wake behind the particle is indepen
dent of the dielectric coefficient, implying that in case of
activedielectric, the wake does not grow behind the partic

FIG. 3. The normalized decelerating field (nÞ0) as a function
of the ratio h/R. For g@1, this field isg independent. Both the
planar casè , expressed in Eq.~31! and the ‘‘exact’’ expression for
the cylindrical configuration as given in Eq.~29! are illustrated
here. Both curves combine into one forh/R→1 but they strongly
diverge forh/R.3. An approximated expression for the deceler
ing field is suggested in Eq.~32!. As clearly revealed by the dashe
line, it fits well the ‘‘exact’’ expression. All quantities are norma
ized toq/4pe0R2.
3-5
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Consequently, in zero order, it does not contribute to
possible acceleration of a trailing bunch. Another interest
feature revealed by the current analysis is associated with
eigenfrequency of the high-order modes2V56ng. With
such eigenfrequencies, the mode is slowly gyrating. Bea
in mind that the phase of the wave is determined
exp@6jng(t2z/V)c/R2jv(f2f0)# we observe that there ar
two families of high-order modes gyrating clockwise
counter-clockwise, each family having its own characteris
phase velocity.

C. Finite size bunch„nÄ0…

Having determined the wake generated by a point cha
we proceed one step further and determine the wake
finite-size bunch. Since we are interested in the potentia
this wake to accelerate a particle in the presence of the ac
dielectric, we shall consider only the contribution of the ze
harmonic. Specifically, we assume a bunch of lengthDz and
radial widthD r ; the wake behind the particle is given ther
fore by

E~t,r !5(
s51

`

EsK0S Vs

g

r

RD H 2

h1
2 2h2

2 E
h2

h1

dr8r 8K0S Vs

g

r 8

R D J
3H c

Dz
E

t2

t1

dt8 cos~Vst8c/R!Q~t8!J , ~33!

where it was tacitly assumed thatv.c, h6[h6D r /2, t6

[t6Dz/2c, and

Es[
q

4pe0R2

4

g2

e

e21

1

K1
2~Vs /g!

. ~34!

Both integrals in the curled brackets may be evaluated a
lytically

Hs[
2

h1
2 2h2

2 E
h2

h1

dr8r 8K0S Vs

g

r 8

R D
5

2

j1
2 2j2

2 @j2K1~j2!2j2K1~j1!#, ~35!

wherej6[(Vs /g)(h6 /R) and

Ts~t![
c

Dz
E

t2

t1

dt8 cos~Vst8c/R!Q~t8!

55
0 for t,2Dx/2V,

sin~Vst1c/R!/~VsDz /R! for utu,Dz/2V,

sin~Vst1c/R!

2sin~Vst2c/R!/~VsDz /R! for t.Dz/2V.

~36!

Based on these explicit expressions, we are able to deter
the expression of the electro-magnetic power generated
the bunch, sinceP5*dv JzEz and therefore
05650
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P̄[
P

2q2c/4pe0R2

5
2

g2

e

e21 (
s51

` Hs
2

K1
2~Vs/g!

sinc2S 1

2
Vs

Dz

R D , ~37!

wherein sinc(x)[sin(x)/x.
Figure 4 illustrates the normalized spectrum of the em

ted power, i.e.,

P̄s5
2

g2

e

e21

Hs
2

K1
2~Vs /g!

sinc2S 1

2
Vs

Dz

R D . ~38!

It may be seen that for a relativistic bunch~e.g.,g510! the
location of the peak of the spectrum is virtually not depe
dent on the width (D r) of the bunch; however, it is strongly
dependent on its length (Dz). For a very short bunch (Dz
50) the spectrum is wider in case the radial width of t
bunch is larger. This may readily be understood, since
bunch consists of electrons closer to the dielectric cylin
that widen the spectrum. Note also that when the bu
length is a significant fraction ofR, the radial width of the
bunch virtually does not affect the spectrum of the emit
radiation; the lower curve (Dz50) represents actually two
indistinguishable curves~D r50 and 0.6R!. This result is
even better illustrated in Fig. 5, which indicates that forDz

>0.2R, the normalized power @ P̄n[ P̄(Dz ,D r)/ P̄(Dz
50, D r50)# is virtually not dependent on the radial widt
of the bunch.

IV. SUMMARY

The decelerating field linked with the Cerenkov radiati
generated by a relativistic (g@1) bunch of electrons moving
parallel to a dielectric cylinder, was analyzed. The over
effect of the emitted electromagnetic energy on the mov
particle was split into two contributions: the zero-order c
cular harmonic, which contributes a decelerating force

FIG. 4. The normalized spectrum as a function of the freque
for h/R51.3,g510,e52.5. The longitudinal and radial extension
of the bunch are the two parameters of this plot.
3-6
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WAKE FIELD OF AN ELECTRON BUNCH MOVING . . . PHYSICAL REVIEW E64 056503
versely proportional tog, and the nonzero circular harmonic
contributing ag-independent force—Eq.~32! is a good ap-
proximation for all practical purposes providedg@1. More-
over, the wake linked to the zero-order circular harmo
may grow in space if the dielectric cylinder consists of
active medium; the growth rate isg independent. For highly
relativistic particles, the wake attached to the nonzero cir
lar harmonics does not grow in space in case the mediu
active. For a bunch not smaller than any typical dimension
the system, the normalized emitted power decreases alge
ically with the length of the bunch, and not exponentially.
addition, the width of the bunch causes an increase in
width of the spectrum of the generated waves.
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APPENDIX A

Consider a charged-line~l! moving at a heightD above a
dielectric~e! half space. The moving charge generates a c
rent density in thez direction given by

Jz~x,z,t !52lVd~x2D!d~z2Vt!. ~A1!

In the absence of the dielectric medium, this current den
generates an electromagnetic field that may be derived f
the following ~primary-superscriptp! magnetic vector poten
tial

Az
~V!~x,z,t !52

m0l

2p E
2`

`

dv
1

2G
e2Gux2Duej v~ t2z/V!,

~A2!

whereinG5uvu/gbc.

FIG. 5. The normalized power@ P̄n[ P̄(Dz ,D r)/ P̄(Dz50, D r

50)# is virtually independent of the radial width of the bunch f
valuesDz>0.2R.
05650
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f
ra-
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The presence of the dielectric half space in the regiox
,0 changes the electromagnetic-field distribution. In t
upper-half space~vacuum!, this is given by

Az
~s!~x.0,z,t !52

m0l

2p E
2`

`

dv A~v!
1

2G
e2Gxej v~ t2z/V!,

~A3!

whereas in the lower-half space, the dielectric material
poses a solution of the form

Az
~s!~x,0,z,t !52

m0l

2p E
2`

`

dv B~v!
1

2G
ej Lxej v~ t2z/V!;

~A4!

here,L5uvuAe2b22/c; the superscript~s! emphasizes tha
this is a secondary field. In order to determine the two a
plitudes A(v) and B(v), the continuity of the tangentia
field is imposed atx50. Explicitly,

A~v!52
12 jAe2b22gb/e

11 jAe2b22gb/e
e2GD ~A5!

is the expression for the amplitude in the upper-half sp
that allows us to determine the decelerating field

E`[Es
~s! ~x5h, z5Vt,t !

52
m0l

2p E
2`

`

dv
c2

j v S v2

c2 2
v2

v2 DA~v!
1

2G
e2GD.

~A6!

Finally, the decelerating field corresponding to the Cer
kov condition (e.b22) is given by

E`5
l

4pe0D

2Ae2b22gb/e

11~Ae2b22gb/e!2
, ~A7!

otherwise (e,b22), this field is zero.

APPENDIX B

Our starting point is Eq.~29! and our purpose is to de
velop an expression for the asymptotic behavior of the
celerating field for a cylinder of large curvature (R@h
2R). For this purpose, we use an asymptotic expression
large orders of the modified Bessel functions of the sec
kind of ordern, namely,

Kn~nj!.A p

2n

1

~11j2!1/4e2nh~j!, ~B1!

wherein, h(j)5A11j21 ln @j/(11A11j2)#. Substituting
in Eq. ~29!, we obtain

E5
q

4pe0R2 H 4(
n51

`

nF 21/4

@11~h/R!2#1/4e2n@h~h/R!2h~1!#G2J .

~B2!
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The sum may be readily evaluated as

E5
q

4pe0R2 34A 2

11~h/R!2

e2@h~h/R!2h~1!#

~e2@h~h/R!2h~1!#21!2 ,

~B3!

therefore expanding for small values above unity, i.e.,h/R
511d whered!1, we obtain
05650
h~h/R!2h~1!5&S h

R
21D ~B4!

and finally,

E5
q

4pe0R2

1

2S h

R
21D 2 . ~B5!
@1# T. Tajima and J. Dawson, Phys. Rev. Lett.43, 267 ~1979!.
@2# P. Sprangleet al., Appl. Phys. Lett.53, 2146~1988!.
@3# P. Sprangleet al., Phys. Plasmas3, 2183~1996!.
@4# E. Esareyet al., IEEE Trans. Plasma Sci.24, 252 ~1996!. See

also, E. Esarey, IEEE J. Quantum Electron.33, 1879
~1997!.

@5# J. D. Edighofferet al., Phys. Rev. A23, 1848~1981!.
@6# W. D. Kimura et al., Phys. Rev. Lett.74, 546 ~1995!.
@7# W. D. Kimura et al., in Advanced Accelerator Concepts, ed-

ited by W. Lawson, AIP Conf. Proc. No. 472~AIP, New York,
1998!, p. 563.

@8# L. Steinhaueret al., J. Appl. Phys.68, 4929~1990!.
@9# A. van Steebergebet al., in Advanced Accelerator Concepts,
edited by S. Chattopadhyay, AIP Conf. Proc. No. 398~AIP,
New York, 1998!, p. 591.

@10# E. Esareyet al., Phys. Rev. E52, 5443~1995!.
@11# Y. C. Huanget al., Appl. Phys. Lett.68, 753 ~1996!; Y. C.

Huanget al., ibid. 69, 2175~1996!.
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