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Wake field of an electron bunch moving parallel to a dielectric cylinder
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The wake field of an electron bunch moving parallel to the axis of a dielectric cylinder is being considered.
It is shown that for a relativistic bunchyé1) the circular harmonic of order zero contributes a decelerating
force inversely proportional tg, whereas the circular harmonics of nonzero order contributénalependent
force. Moreover, the wake linked to the circular harmonic of order zero may grow in space in case the
dielectric cylinder consists of an active medium; however, this growth rate does not depend on the yalue of
On the other hand, no growth is anticipated for the case of circular harmonics of nonzero order.
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[. INTRODUCTION (r,¢,z) coincides with that of the cylinder. Parallel to this
axis, at a radius =h>R and at an angleb= ¢,, a point

Acceleration of electrons by radiation at optical wave-charge is moving at a velocity—see Fig. 1. In its motion,
lengths is one of the most promising alternatives for futurethe point charge generates a current density
electron acceleration. Generally speaking, optical schemes
may be divided into two main groups: in the caseplafsma-
basedschemes, a laser pulse is injected into a plasma where
it excites a space-charge wake that, in turn, may accelerate a
trailing bunch of electrongL—4]. Another group corresponds whose time-Fourier transform reads
to variousinverse radiationprocesses such as inverse Cer- L .
enkov [5-7], inverse free-electron lasétFEL) [8,9], and o i o/\)z
inverse transition radiatiofl0,11. In the case of an inverse I, ¢.z,0) = —qro(r= DEC bo)5 - € vz,
radiation process, the laser pulse is injected at identical con- 2
ditions as when the radiation is emitted by electrons propa-
gating within the structure. For example, in an IFEL, theln the absenceof the cylinder this current density excites a
laser pulse exhibits a polarization and a wavelength such th@rimary  (superscript p) magnetic vector potential
in the presence of the wiggler, the motion of the electron isﬁép)(r@,z; ) which is a solution of the equation
synchronous with the wave, the phase corresponding to an
accelerating force. In all these laser-driven systems, energy
stored in an active medium is transformed into radiation in-
side the laser cavity being further used for acceleration in
various structures. In the cylindrical coordinate system resorted to, this solution

It was suggested in Ref§12,13 to directly use energy reads
stored in an active medium in order to accelerate electrons.
Specifically, it was demonstrated that a Cerenkov wake, gen-

1
31, ¢,z;t)==qV-o(r—h)é(é— o) 5(z=Vt) (1)

2 w_z (p) N — .
Vet c2 A; (r,¢,z,0) ol (1, 4,2, 0). 3

o

Ao i, (b
erated by a small trigger bunch, may be amplified by the ~AX(r,¢,z,0)=— 2m? © iz 3 gl(é=do)
medium. A second bunch trailing behind may be accelerated
by the amplified wake. The concept was demonstrated within | (K, (T'r) r>h,

K, (T'h)lI (T'r) r<h,

y=—0o

the framework of dinear theory when the charged-particle (4)
moves in the active medium. A possible practical experiment
is to launch a bunch of electrons parallel to a dielectric cyl-
inder that may be active, e.g., a Nd:YAG rod, and examine
the acceleration of electrons by the amplified wake. Since the
transverse dimension of the bunc00 um diametey is sig-
nificantly smaller than that of the dielectric ra® mm),
many nonsymmetric modes may be excited.

It is the purpose of this study to determine the radiation
characteristics generated by a relativistic bunch of electrons
moving parallel to a dielectric cylinder.

II. MODEL FORMULATION ) . . .
FIG. 1. Basic setup of the system under consideration; a dielec-

Consider a cylinder of radiuR consisting of dielectric tric cylinder (e.g., Nd:YAG of radiusR and a bunch of electrons
material (¢). The axis of a cylindrical coordinate system injected parallel to the axis at a radius-h and an angles= ¢,.
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whereinl' =|w|/cyB, B=Vlc, y=[1— ]2 1,(&), and
K,(§) are modified Bessel functions of ordey of the first
and second type, respectively.
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The presencef the cylinder alters the field distribution in
the whole space. This change is due to the so-called second-
ary (superscrips) field whose longitudinal components read

At the surface of the cylinder, the tangential components

of the primary field are given by

EP(r=R,¢,z,0)

_2 |: ZBZ |gn(rR) ejV((ﬁ*(ZﬁO)e*j(w/V)Zay,

EP(r=R, ¢,z 0)

“ [—jvc/R
= |
2[ 5

,,(F R) ej V(gf*d)o)e*j(w/V)zav ,

(5
HP(r=R,$.,z,0)

o]

= 2>

p=—0

[—1 .
—Ti,(TR)
Mo

eJ v(p— (i’o)e*j((‘)/v)zay ,

where a,= — (Quo/4m?)K ,(Th); I (&) stands for the de-
rivative of | ,(£) with respect to the argumery).

o]

ES(r,¢,z,0)=e (@2 3 gln(¢=d0)

yp=—o

AK(Ir) r>R,
B,J,(Ar) r<R, )
HO(r, ¢, 7 w)=e 1OV 3 @ld-do
CK,(Tr) r>R,
D,J,(Ar) r<R, ™

whereinA =|w|e—1/8%c; J,(£) is the Bessel function of
the first kind and ordep. Formulation of the boundary con-
ditions atr =R requires—in addition to Eqg6) and (7)—
also the determination of the azimuthal components of the
electromagnetic field; these are given by

_2n2 —
. — jouo'C, K,,(Fr)—l—— L)A KV(Fr)} r<R,
E((;):efj(w/v)z E el (= o) . (8)
el . . jv[—jo
P JwMOADV‘Jv(Ar)+T T) BV‘JV(Ar):| r<R,
A 2n2 i
. i JT( \‘,‘”) cVKV<rr>—jweorAyky<rr>} r>R,
HE=e IV 3 give-do AT 9
el 1w _ <R.
dr: ( v ) D,J,(Ar)—jwegeAB,d (Ar)} r<r

wherejv(g) stands for the derivative with respect to the argungenitthe Bessel function of the first kind and orderky(g)

stands for the derivative of the modified Bessel function of the second kind, ardéso with respect t@.

Continuity of the tangential components imposes four conditions required in order to determine the four unknown ampli-
tudesA,, B,, C,, andD,. Being interested only in the longitudinal reaction force acting on the point charge, we shall state
here only the explicit expression of the scattered amplitudEgaf namely,

v,y2 )2
1+ = | K~ | 1,0+ ——= K,d,4 ——
joa, Q|7 &’p VB\/: VB\/:
A= ) (10
YB [vy 1 ) r
— |1+ —=|J,K K B, ——= K D, ——=
Q ey’p? 7/3\/: 7/3\/:

056503-2



WAKE FIELD OF AN ELECTRON BUNCH MOVING . ..

J.(QVe),

wherein(l=wR/c, J,=
=K, (Q/yB).

Along the path of the charged particle, the secondary lon-
gitudinal electric-field &(7)=EY (r=h, ¢=¢g,z,t) is

I,=1,(Q/yB), andK,
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I1l. ANALYSIS OF THE SOLUTION
A. Circular harmonic of zero order (»=0)

The explicit expression for the wake for this case is

given by qQ K12
2q 1 “o| Vs R
£(r)= 2q iJ'oo 40(—] Q) E(T)——q—f dQ(—jQ) y—i
47T60R2 v=—» 29 J - Teo £m = KO _)
NRE B
! ’)/B R NV(Q) ejQ(TC/R) (11) Xwe]‘“(c"ﬂ?), (14)
K ( Q) | DU | Do)
B where
whereinT=t—z/V and No 1 Q o)
ol
Dy 4 4 4
w=] 2 (15 = )2
A=) |1 =22 (Q/'y)
XIAQVEN QL YB)K,(Q ¥B) x . (19
) ) (Q\/:j‘i‘ \/:) Ko(Q/y)
—1,(QyB)K(Q/yB) Jo \/: Ki(Q/y)
Ql
3,V + —=I3,(0 o) ——— Q/vA) In order to evaluate the integral in E(L.4), we shall deter-
YB \/: 1,(QyB) mine the poles of the integrand at the limit—«; these
K (QvB) poles, in turn, are determined by the zeroes of the Bessel
3 (Q\/:)Jr \/:j Q] yB ’ function[ps: Jo(ps)=0,s=1,2,... ] hence,
B f K.(Q/7B) .
(12 Jo(Q Ve =Jo(pe) + (0~ §>[W (Ve |
Q=0
vy\2 2 (16)
DAQ)=(yB)? (6 1+2—2—) T | o
Y B%€ with Q. =p./\e and wherely(ps)=0. The main contribu-
5 tion to the integral in Eq(14) is assumed to come from the
K.(QyB) 13 Qﬁ+ € poles associated with the denominator in Eid) and there-
K (O AQVe e fore, Eq.(14) reads
AQyB) YBVe€
J(QlyB) Qs h\ 7?2
XJV“N:) —q 2 2e KO(_Sﬁ)
AQ/yB) &(r)= < 24
4regR? Y2 e—18&4 < (QS)
=
I Qe+ Y
vB \/: e]ﬂ?
K (Q/yB) {hj ) 92]’ 7
XJ,(Q \/:)— (13
K (Q/yB)

We shall now investigate this wake field in the limiting case

v>1; for this purpose, the expression occurring in E)

where 7= 7¢/R; in this expression we resort to the relation
lo(UW)K1(u)+11(u)Kg(u)=1/u. Imposing the requirements
of causality, the last integral is recast into the analytic form

is divided into two partsi(a) that comprising the circular
harmonic of order zeroy=0); (b) all the remaining har-
monics @#0).

ej(),T _1
fd L CIGCIC T
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with @ (u) denoting the Heaviside step function. Based upon 100.0 ; ; [ ‘
this result, it is now possible to obtain the longitudinal wake — _ . e=3312
field, &=& (7=0), explicitly given by E : =100
2 20 ‘
|k [Bsh £ 100 -\ |
PR N A 1R (19 2 ) Cylindri |
0= 5~ [ . Cylindric geometry
4megR® v e—1521 % g - P Planar geometry
Yy = ~—
S
A rough simplification of Eq(19) may be obtained assuming g T
a very large radius of curvature for the cylinder. Subjectto .2
this condition, i.e.R>h—R andh>h—R, we obtain !
0.1 { i | | 1 ! : :
< (QS h) 2 1.0 20 30 40 50 60 7.0 80 90
ol ==
Y RID R cogmin-rim (o) R
K1<Q_S) FIG. 2. The normalized decelerating field=€0) as a function
Y of the ratioh/R for y=100 ande=3.312. Both the planar case

o ) expressed in Eq24) and the “exact” expression for the cylindrical
and bearing in mind that for large arguments, the zero-ordegonfiguration as given in Eq25), are shown to be very similar.
Bessel function of the first kind haeeriodic zeros, it is pos-  The normalization in both cases ig/@wh)/4me,hy. The number
sible to approximateé) =ps/ye— 1~ ms/\e—1, therefore of Bessel harmonics that needs to be considered has to be of the

obtaining order of ye—1, otherwise significant discrepancies occur. Subject

to this condition, the similarity between the two curves is preserved

” JE— 1 even if the other two parameters are dramatically altefed
—s{(2alyJe—D[(h—R)/RJ} _
SZ]_ e 4 e(ZW/y\fﬁ)[(h*R)/R]_ 1 ~10800 ande=1.5,33.
Up to a factor of 2, this exact expression is identical to the
_ 1 (21) approximate result in Eq22). In fact, we found within a
o h-R good approximation that
yVve—1 R
that e g/27h h(h 1 87 €
so tha - 77 ) ==
" 4mes(h—R) | RIR 2 e—1
e N 4e 1 (22 5
" ZmegnR) Jeo1 7’ Ko( P _h
yJe—1R

where A =qg/27h denotes the charge-per-unit length. This XZ
expression clearly indicates that the decelerating force is in- s=1 K, Ps
versely proportional to particle’s momentumecall that we yVe—1
assumedy>1). This runs contrary to the result occurring for
the case of a point charge moviimgsidea symmetric tunnel _ A 2¢ 1h o5
bored in a dielectric material, in which case the decelerating "~ 4meg(h—R) \/ﬁ Ty R’ (29)

force for y>1, is y independent. However, this is almost

exactly the expression for the decelerating field acting on a

charged-ling]\) moving at a hightA from a dielectric half-  which is identical to Eq(24) at the limith>h—R. Figure 2
space—this would correspond to a distaheeR in the case illustrates the exact decelerating field as represented by the
investigated here. In Appendix A, it is shown that this field first line in Eq. (25 normalized to ¢/2wh)/4meshy as a

(denoted bye,,) is given by function of the ratioh/R. As a reference, the planar case
(&) is also plotted and the similarity between the two is
A 2vBJe— B 2e evident.
=T A vp A =TICL (23 From the poles determined in E(L6), we may also de-
TEA 1+ (yBVe—p “le) duce an important characteristic of the wake trailing the par-

ticle for active dielectric material, i.e., the dielectric coeffi-

cient consists of a real pagt, as well as an imaginary part

€; that is nonzero within a limited frequency range=(e,

N 2¢ 1 . . . 4 .

S O ——— (24) +j€). Bearing in mind thaf)s=p/ €, the dimensionless
dmegA Je—1 ¥ growth rate in this case is given by

which for a relativistic particle ¢>1) simplifies to

056503-4



WAKE FIELD OF AN ELECTRON BUNCH MOVING . .. PHYSICAL REVIEW E64 056503

Im(w) 1 €—1
| |=\[§ — = IWe-1)2+—¢+1 10°

Wres (er_1)2+5i2 ]
= 1
€; L 10 T
~ m, (26) L:D __ Planar geometry -
r .% 10! L / Cylindric geometry
where w,es denotes the resonant circular frequency of the ¢ T .
medium corresponding to one of the eigenfrequencies of the g 107 -
system. It is important to point out that this growth rate is 2 ]
y-independent. A 10
<
g .
B. Nonzero circular harmonics (»#0) £ 107 -
In this section, we shall consider the contribution of the 9! j

circular harmonics of nonzero order. According to previous

0' | ] | I | | L
ula . 1.0 20 30 40 50 60 70 80 90
definitions and assuming>1

/R
N, vy| K, (Qly) 1 FIG. 3. The normalized decelerating field£0) as a function
=V~ ) : 5’ of the ratioh/R. For y>1, this field isy independent. Both the
Dy L QTK(Qly) Q2= [ryK(Q7)IK,(Q1y)]

planar casee, expressed in Eq31) and the “exact” expression for
(27) the cylindrical configuration as given in ER9) are illustrated

here, it was tacitly assumed that the poles corresponding there' Both curves combine into one fofR—1 but they strongly

’ . (?lverge forh/R>3. An approximated expression for the decelerat-
circular modes are given b@*= VZ?’ZK,Z,/Ki” 1?y%. Con- ing field is suggested in E432). As clearly revealed by the dashed
sequently, the longitudinal electric field acting back on theline, it fits well the “exact” expression. All quantities are normal-

charge is given by the expression ized toq/4meoR2.
0| h\1?
U _ This expression is identical with the reaction fi¢isbe Ref.
2g d 1 (= e Yy R [15]] on a point charge moving at a heigh¢=h—R) above
= —4776 R2 ﬁ ;0 ;J dQe ( 0] a dielectric half space whep>1, which explicitly reads
0 v -
Ny
q
3 _~—
< (@) &, 4#60(2A)2X2' (31
! v(vyl|Q
y (2 Y |2 |2) 28 | | | |
K M QO =voy Figure 3 illustrates the asymptotic expressi@h)(and the
\ expression in Eq(29—both normalized tay/4meoR?. It is

evident that as the ratio/R is closer to unity, the decelerat-
When evaluated near the poles, the cubic term in the inteing field is inversely proportional to the square of the height
grand is of order unity, therefore, following a similar ap- from the surface of the cylinder. Contrary to the result in the
proach as in the previous section, the decelerating electriprevious section, there is great discrepancy between the

field reads asymptotic solution &.) and the exact one foh/R>3.
Based on these two expressions, we developed an approxi-
K ( h) 2 mation of the exact solution that has the following form:
© V=
__ ’
N 47760R2 4;::1 K,(v) (29 q 1
& 2 2 ) (32)
Using the explicit expressiofsee Ref[14]) for asymptotic PPN 4meoR Z(E—l) COS,{%(E_l)}
behavior for large  orders, namely, K, (v&) R 2\R

=\Jm2vlI(1+ &)Y " @and (&)= V1+&+In[&/(1

2 . . . .
+y1+£7)] it is shown in Appendix B that foR>h—R, = ihis expression is also illustrated in Fig. 3 and evidently, it
the decelerating field may be approximated by the relativel\pqvs excellent agreement with the exact solution.

simple equation The expression in Eqs29) and (32) clearly imply a

1 v-independent decelerating field for very highMoreover,
E= q > 5 (300  the high-order ¢>0) wake behind the particle is indepen-
4megR (E_ 1) dent of the dielectric coefficient, implying that in case of an
R activedielectric, the wake does not grow behind the particle.
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Consequently, in zero order, it does not contribute to the
possible acceleration of a trailing bunch. Another interesting
feature revealed by the current analysis is associated with the
eigenfrequency of the high-order moded)= *=vy. With
such eigenfrequencies, the mode is slowly gyrating. Bearing
in mind that the phase of the wave is determined by
exd £jrvAt—2zV)c/R—ju(¢dp— ¢o)] we observe that there are
two families of high-order modes gyrating clockwise or
counter-clockwise, each family having its own characteristic
phase velocity.

Normalized Spectrum

C. Finite size bunch(»=0)

Having determined the wake generated by a point charge,
we proceed one step further and determine the wake of &
finite-size bunch. Since we are interested in the potential of
this wake to accelerate a particle in the presence of the active
dielectric, we shall consider only the contribution of the zero £ 4. The normalized spectrum as a function of the frequency
harmonic. Specifically, we assume a bunch of lenjfand  for n/R=1.3,y=10, e=2.5. The longitudinal and radial extensions
radial widthA, ; the wake behind the particle is given there- of the bunch are the two parameters of this plot.
fore by

10°

10° 10' 10

_ P

- Qs r 2 hy QS r, PE
= B ) Ky — — —qg°c/AmegR
E(7,r) 521 5SK0( y R)[hi—hz_ fhidr r KO( . R)} q2cl4meoR?
2 € & M (1 AZ)
c [ S inc| zQ—
x[A—f “dr cos{Qg’c/R)@(r’)}, (33 v =i K2(Qdv) siné{ 3 Qs (37)
z T_
] ] wherein sinck) =sin(x)/x.
where it was tacitly assumed that=c, h.=h*A/2, 7. Figure 4 illustrates the normalized spectrum of the emit-
=7%A,/2c, and ted power, i.e.,
q 4 € 1 2 € H2 1 A,
= Ireg’® 7 e 1 K20LTy) (39 P Ve 1KAOTy) sincé 50y |- (39
Both integrals in the curled brackets may be evaluated andt may be seen that for a relativistic bun@hg., y=10) the
lytically location of the peak of the spectrum is virtually not depen-
dent on the width 4,) of the bunch; however, it is strongly

2 he Qgr’ dependent on its lengthAg). For a very short bunchX(,
HSEWL dr'r’Ko 7§ =0) the spectrum is wider in case the radial width of the
oo bunch is larger. This may readily be understood, since the

2 bunch consists of electrons closer to the dielectric cylinder
:W[g—Kl(g—)_g—Kl(§+)]u (35  that widen the spectrum. Note also that when the bunch
o lengthis a significant fraction oR, the radial width of the
_ bunch virtually does not affect the spectrum of the emitted
where¢.=(Qs/y)(h./R) and radiation; the lower curve,=0) represents actually two
c [ indistinguishable curvegA,=0 and 0.®). This result is
T(7)= A_J d7r’ cog Q' c/R)O(7') even better illustrated in Fig. 5, which indicates that Agr
zaT- =0.2R, the normalized power[P,=P(A,,A,)/P(A,
0 for 7<—A,/2V, =0,A,=0)] is virtually not dependent on the radial width
. f the bunch.
SiN(Qer, o/R)(QA,/R)  for |7]<ajev, O MEPUNC
| sin(Qq7,c/R) IV. SUMMARY

—sin(Qs7_CIR)/(QsA,/R)  for 7>A,/2V. The decelerating field linked with the Cerenkov radiation

(36) generated by a relativisticyt> 1) bunch of electrons moving
parallel to a dielectric cylinder, was analyzed. The overall
Based on these explicit expressions, we are able to determirdfect of the emitted electromagnetic energy on the moving
the expression of the electro-magnetic power generated hyarticle was split into two contributions: the zero-order cir-
the bunch, sinc® = [dv J,E, and therefore cular harmonic, which contributes a decelerating force in-
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The presence of the dielectric half space in the region
<0 changes the electromagnetic-field distribution. In the
upper-half spacévacuum, this is given by

5 Mo\ [ 1 e
z (8 (x> —_ _f T A Txpjo(t—2/V)
kE A (x>0.z,t) 5 _mdw Al(w) T ,
E (A3)
g whereas in the lower-half space, the dielectric material im-
Z poses a solution of the form
N[ 1 .
(8)(x< :_MLJ = aiAxgio(t=2IV).
A (x<0,z,t) 5 ﬂcdw B(w) 2Fe e ;

(A4)

here,A =|w|\e— B~ ?/c; the superscripts) emphasizes that
this is a secondary field. In order to determine the two am-

FIG. 5. The normalized poweP,=P(A,,A,)/P(A,=0,A,  Plitudes A(w) and B(w), the continuity of the tangential
=0)] is virtually independent of the radial width of the bunch for field is imposed ak= 0. Explicitly,

valuesA,=0.2R.

1-jNe=B *yBle .,
versely proportional tey, and the nonzero circular harmonics 1+j /—ZE_B— yﬁ/ee
contributing ay-independent force—Ed32) is a good ap-
proximation for all practical purposes providee>1. More- s the expression for the amplitude in the upper-half space
over, the wake linked to the zero-order circular harmonicthat allows us to determine the decelerating field
may grow in space if the dielectric cylinder consists of an

Alw)=—

(A5)

active medium; the growth rate igindependent. For highly ngE@ (x=h, z=Vt,t)
relativistic particles, the wake attached to the nonzero circu-
. . . . . A s CZ (1)2 (1)2 1
lar harmonics does not grow in space in case the medium is __ ko o | 2= 2 A(w) e T
active. For a bunch not smaller than any typical dimension of 27 ) jolc? v? 2r '

the system, the normalized emitted power decreases algebra-
ically with the length of the bunch, and not exponentially. In
addition, the width of the bunch causes an increase in the
width of the spectrum of the generated waves.

(A6)

Finally, the decelerating field corresponding to the Ceren-
kov condition > B2) is given by
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for the Promotion of Research at the Technion. otherwise €< 3~?), this field is zero.
APPENDIX A APPENDIX B
Consider a charged-lin@) moving at a height above a Our starting point is Eq(29) and our purpose is to de-
dielectric(e) half space. The moving charge generates a curVelop an expression for the asymptotic behavior of the de-
rent density in thez direction given by celerating field for a cylinder of large curvaturds$h
—R). For this purpose, we use an asymptotic expression for
J,(X,2,t)=—AVS(x—A) 8(z— V). (A1) large orders of the modified Bessel functions of the second
kind of orderv, namely,
In the absence of the dielectric medium, this current density
generates an electromagnetic field that may be derived from K (vé)~ [T 1 e v7(® (B1)
the following (primary-superscripp) magnetic vector poten- v 2v(1+ &)1 ’
tial

wherein, 7(&)=1+&+In[&(1+ 1+ £?)]. Substituting
N (> 1 . in Eq. (29), we obtain
A(zV)(X’Z*t):_%f_ dwﬁe—ﬂx—Alejw(t—z/V),

(AZ) q * 21/4 2
- —v[n(h/R)=n(1)]
£ 477e0R2[4,,21 Y1+ (hiR)Z72€ } :
whereinl" =|w|/yBc. (B2
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The sum may be readily evaluated as

g2l 7(NR) = n(1)]

q / 2
&= dmeoR? YN 1T (nR)2 (7 WR=-wTI_1)2°

(B3)

therefore expanding for small values above unity, iéR
=1+ & where <1, we obtain

PHYSICAL REVIEW E64 056503

h
n(h/R)— n(1)=\/i(§— 1) (B4)
and finally,
E= a ! B
C 4megR® [ h 2 (B5)
2 ﬁ_l
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